FERMIONIC q-FOCK SPACE AND BRAIDED GEOMETRY

نویسنده

  • S. Majid
چکیده

We write the fermionic q-Fock space representation of Uq(ŝln) as an infinite extended braided tensor product of finite-dimensional fermionic Uq(sln)-quantum planes or exterior algebras. Using braided geometrical techniques developed for such quantum exterior algebras, we provide a new approach to the Kashiwara-Miwa-Stern action of the Heisenberg algebra on the q-fermionic Fock space, obtaining the action in detail for the lowest nontrivial case [b2, b−2] = 2( 1−q 1−q−4 ). Our R-matrix approach includes other Hecke R-matrices as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 94 10 24 1 v 3 6 N ov 1 99 4 Introduction to Braided Geometry and q - Minkowski Space

We present a systematic introduction to the geometry of linear braided spaces. These are versions of R n in which the coordinates x i have braid-statistics described by an R-matrix. From this starting point we survey the author's braided-approach to q-deformation: braided differentiation, exponentials, Gaussians, integration and forms, i.e. the basic ingredients for q-deformed physics are cover...

متن کامل

On the Fock Space for Nonrelativistic Anyon Fields and Braided Tensor Products

We realize the physical N -anyon Hilbert spaces, introduced previously via unitary representations of the group of diffeomorphisms of the plane, as N fold braided-symmetric tensor products of the 1-particle Hilbert space. This perspective provides a convenient Fock space construction for nonrelativistic anyon quantum fields along the more usual lines of boson and fermion fields, but in a braide...

متن کامل

The Erwin Schrr Odinger International Institute for Mathematical Physics Q{epsilon Tensor for Quantum and Braided Spaces Q-epsilon Tensor for Quantum and Braided Spaces

The machinery of braided geometry introduced previously is used now to construct thètotally antisymmetric tensor' on a general braided vector space determined by R-matrices. This includes natural q-Euclidean and q-Minkowski spaces. The formalism is completely covariant under the corresponding quantum group such as g SO q (4) or g SO q (1; 3). The Hodge operator and diierentials are also constru...

متن کامل

q-EPSILON TENSOR FOR QUANTUM AND BRAIDED SPACES

The machinery of braided geometry introduced previously is used now to construct the ǫ ‘totally antisymmetric tensor’ on a general braided vector space determined by R-matrices. This includes natural q-Euclidean and q-Minkowski spaces. The formalism is completely covariant under the corresponding quantum group such as ̃ SOq(4) or ̃ SOq(1, 3). The Hodge ∗ operator and differentials are also cons...

متن کامل

Lie Algebras and Braided Geometry

We show that every Lie algebra or superLie algebra has a canonical braiding on it, and that in terms of this its enveloping algebra appears as a flat space with braided-commuting coordinate functions. This also gives a new point of view about q-Minkowski space which arises in a similar way as the enveloping algebra of the braided Lie algebra gl2,q. Our point of view fixes the signature of the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995